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Abstract

The conventional approach to spinwaves is the continuum approximation; for which some simple solutions
for bi-partite lattices are known; with the inclusion of discrete systems; for which the continuum approximation
is destined for failure in the strong coupling limit. Departures from spin trajectories make the approximation
one for which we cannot satisfy the conclusion that the coupling is stronger than the given spacing parameter.
When a non-linear analysis is instead supported by that of tension and torsion as parameters; the solutions
manifest as elliptical in nature; to which there can be found exact discrete solutions. These exact discrete
solutions interpolate between the discrete periodic lattices and that of the continuum; and promote the in-
troduction of non-linear quasi-solitons; to which there is periodic behavior. The understanding of a discrete
non-linear analysis of superposition and interaction is found to be of necessity in the finding of a solution
to therefore many systems of interest; including the bi-partite lattice and that of the Ising model to describe
crystals.

Discrete Ising Model

We begin with the discrete ising model; to which solutions have not aforementioned been found; and it is to
that which we find at odds the characteristic length scale; we will not go into a proof that the strong coupling
limit defies the discrete to continuum translation; but instead impose boundary conditions on the model; to
which there appears manifest a singular nature to the solutions; of which the algrebraic functions translate
into transcendental functions of elliptic variety in the one-dimensional system with isotropy:

∂ ~S j(x , t)

∂ t
= J ~S j(x , t)× (~S j−1(x , t) + ~S j+1(x , t)) ∀ j (1)

One can go to the continuum; but we devote our time to finding discrete elliptical solutions; for the sake that
the strong coupling limit fails with the exchange constant when departures from linearity manifest.
Testing the ansatz:

~S j(x , t) = η(x , t)(α jsn(ω̂(x , t), m),β jcn(ω̂(x , t), m),γ jdn(ω̂(x , t), m)) (2)

With:

m=
v2

c2
ω̂(x , t) = E[m]

2
π
(x − vt)−φ j (3)

Time dilation imposes a nonlinear factor to which regularizes tension and torsion; and admits a phase which
can comparably (and discretely) change from lattice site to lattice site.
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1 Imposition of Relativity

We know from the differential equation governing the elliptic functions:

(
d y
d t
)2 = (1− y2)(1− k2 y2) (4)

That the differential of the time dilation squared is the integral of a comparative Lorentz factor for the two
sublattices of spin in the bi-partite lattice; to which ( d y

d t )
2 = η(x , t).

Which is to that of the differential equation the source of the left hand side; and which is the local contraction
of Lorentz factors; to which the differential equation (1) becomes:

∂ ~S j(x , t)

∂ t
= (∂t logη)~S j(x , t) + (α̂ jcn(ω̂)dn(ω̂), β̂ jsn(ω̂)dn(ω̂), γ̂ jsn(ω̂)cn(ω̂)) (5)

Where:

α̂ j = −E[m]
2
π

vα j (6)

β̂ j = E[m]
2
π

vβ j (7)

γ̂ j = −E[m]
2
π

mvγ j (8)

Where use of the Jacobi summation formulas is used:

cn(x + y) =
cn(x)cn(y)− sn(x)sn(y)dn(x)dn(y)

1− k2sn2(x)sn2(y)
→ 2

cn(x)cn(φ∆)
1− k2sn2(x)sn2(φ∆)

(9)

sn(x + y) =
sn(x)cn(y)dn(y) + sn(y)cn(x)dn(x)

1− k2sn2(x)sn2(y)
→ 2

sn(x)cn(φ∆)dn(φ∆)
1− k2sn2(x)sn2(φ∆)

(10)

dn(x + y) =
dn(x)dn(y)− k2sn(x)sn(y)cn(x)cn(y)

1− k2sn2(x)sn2(y)
→ 2

dn(x)dn(φ∆)
1− k2sn2(x)sn2(φ∆)

(11)

Where all odd term’s cancel. Describing a phase by φ∆ = φ j −φ j−1:

α̂ j = −(∂t logη)
sn(ω̂)

cn(ω̂)dn(ω̂)
+ 2Jβ jγ j

δ1

ρ(x , t)
(12)

β̂ j = −(∂t logη)
cn(ω̂)

sn(ω̂)dn(ω̂)
+ 2Jα jγ j

δ2

ρ(x , t)
(13)

γ̂ j = −(∂t logη)
dn(ω̂)

sn(ω̂)cn(ω̂)
+ 2Jα jβ j

δ3

ρ(x , t)
(14)

Where:
δ1 = 2cn(φ∆, m) (15)

δ2 = 2cn(φ∆, m)dn(φ∆, m) (16)

δ3 = 2dn(φ∆, m) (17)

And where η= v has been cancelled by that of the denominator in the addition formulas; and:

ρ(x , t) = 1−msn2(x)sn2(φ∆) (18)

And:
η(x , t) = ιnd(ω̂) (19)
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Leading to:

−(∂t logη)
sn(ω̂)

cn(ω̂)dn(ω̂)
= −vE[m]

2
π
ιmdn(ω̂)sn(ω̂)cn(ω̂)

sn(ω̂)
cn(ω̂)dn(ω̂)

= −vE[m]
2
π
ιmsn(ω̂)2 (20)

−(∂t logη)
cn(ω̂)

sn(ω̂)dn(ω̂)
= −vE[m]

2
π
ιmdn(ω̂)sn(ω̂)cn(ω̂)

cn(ω̂)
sn(ω̂)dn(ω̂)

= −vE[m]
2
π
ιmcn(ω̂)2 (21)

−(∂t logη)
dn(ω̂)

sn(ω̂)cn(ω̂)
= −vE[m]

2
π
ιmdn(ω̂)sn(ω̂)cn(ω̂)

dn(ω̂)
sn(ω̂)cn(ω̂)

= −vE[m]
2
π
ιmdn(ω̂)2 (22)

And:

−E[m]
2
π

vα j(1−msn2(x)sn2(φ∆)) = −vE[m]
2
π
ιm(1−msn2(x)sn2(φ∆))sn(ω̂)2 + 2Jβ jγ jδ1 (23)

E[m]
2
π

vβ j(1−msn2(x)sn2(φ∆)) = −vE[m]
2
π
ιm(1−msn2(x)sn2(φ∆))cn(ω̂)2 + 2Jα jγ jδ2 (24)

−E[m]
2
π

mvγ j(1−msn2(x)sn2(φ∆)) = −vE[m]
2
π
ιm(1−msn2(x)sn2(φ∆))dn(ω̂)2 + 2Jα jβ jδ3 (25)

Supercondictivity Origins

The magnetic only solution (above) indicates that a renormalization occurs at the magnetic only fixed point
in the flow of the theory. Second to this; is the potentiation of inclusion of local to local terms of an electro-
magnetic variety. The solution given by that of the (above) indicates that when we uniformize and unitarily
procure from the electromagnetic solution to a dual in the vector field based contingently around magnetic
and electric solutions; that this precipitates electromagnetic symmetry breaking; by that which is a separable
contribution to the spin wave geodesic equation. There are only two elements of the theory:

1.) Renormalization to electric only and magnetic only solutions; precipitates superposition in the Dirac to
Pauli Exclusion Principle locality violation bridge with logarithmic compensation of geodesic phase of spin-
waves to electron mass and time.

2.) Renormalization of the local to global to local theory of the uncertainty relation that derives; precipitates
superposition to spontaneous symmetry breaking of the quantum states in light and mass below a threshold
set by spinwaves to charge holes.

In continuance; the result is spin charge separation with symmetry breaking precipitating a decoupling of
matter from light and wavelengths to which ensure universality of conditional in that of spin and charge (hole
or charge) localization in a unitary lowered energy potential.
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